Most info getting math anyone: To be far more particular, we will grab the ratio out of fits to help you swipes right, parse people zeros throughout the numerator or even the denominator to at least one (necessary for generating genuine-cherished journalarithms), right after which do the absolute logarithm of worthy of. So it figure alone may not be eg interpretable, however the relative overall styles would-be.
bentinder = bentinder %>% mutate(swipe_right_speed = (likes / (likes+passes))) %>% mutate(match_price = log( ifelse(matches==0,1,matches) / ifelse(likes==0,1,likes))) rates = bentinder %>% select(go out,swipe_right_rate,match_rate) match_rate_plot = ggplot(rates) + geom_point(size=0.dos,alpha=0.5,aes(date,match_rate)) + geom_smooth(aes(date,match_rate),color=tinder_pink,size=2,se=False) + geom_vline(xintercept=date('2016-09-24'),color='blue',size=1) +geom_vline(xintercept=date('2019-08-01'),color='blue',size=1) + annotate('text',x=ymd('2016-01-01'),y=-0.5,label='Pittsburgh',color='blue',hjust=1) + annotate('text',x=ymd('2018-02-26'),y=-0.5,label='Philadelphia',color='blue',hjust=0.5) + annotate('text',x=ymd('2019-08-01'),y=-0.5,label='NYC',color='blue',hjust=-.4) + tinder_theme() + coord_cartesian(ylim = c(-2,-.4)) + ggtitle('Match Rate Over Time') + ylab('') swipe_rate_plot = ggplot(rates) + geom_point(aes(date,swipe_right_rate),size=0.2,alpha=0.5) + geom_simple(aes(date,swipe_right_rate),color=tinder_pink,size=2,se=Untrue) + geom_vline(xintercept=date('2016-09-24'),color='blue',size=1) +geom_vline(xintercept=date('2019-08-01'),color='blue',size=1) + annotate('text',x=ymd('2016-01-01'),y=.